Tag Archives: diy

2020-2022 mega update

It seems somewhere along the way I’ve lost my passion/time for updating this blog. I personally blame getting the bike as now I have yet another exciting way to spend rather limited amounts of available time, but it’s probably largely thanks to the massive renovations we undertook in 2020-2021 which has such sucked up any spare time.

When we brought our house in 2014, the roof had been flagged as a likely problem and due a replacement. Naturally we had zero money after buying the house, so managed to bodge the roof along for a few more years with some improper use of silicone sealants and managed to squeeze out another 6 years of life, but in 2019 it got to the stage where it was clear it wasn’t going to be possible to bodge any more and would need the long overdue full replacement as we were starting to experience leaks that could no longer be patched around.

‘ol leaky

So we bit the bullet in late 2020 and kicked off a replacement. Given we’d need scaffolding for this project, we decided we’d roll it into part of a wider renovation/upgrade project and do some other big ticket items on the house at the same time and wrap it into a small loan extension on the current mortgage whilst rates were sub 2.5%.

Before the roofing work started, we made the choice to remove the natural gas connection from the house. Ripping it out had multiple benefits:

  1. Firstly we needed to remove it before the new roof went on as the old gas cylinder hot water had a flu that went up and through the roof, and we didn’t want to cut a hole in the new roof for an old system that was due replacement. So it needed to come out as the first step.
  2. Secondly all our gas appliances dated back to the 90s and all were end of life with various quirks and features. We had an old unflued gas heater that we’d never used for health reasons, the old hot water cylinder and very fickle part broken gas stovetop.
  3. Finally for added incentive, the gas lines company were starting to be jerks and pressuring us to move the gas meter on the street due to new health and safety rules preventing them from checking the meter where they had originally installed it. There was some disagreement between them and us about who’s problem that was, but we were looking at many thousands of potential costs to rectify if we lost that argument.

We had no love for gas for cooking, it’s expensive to keep with line charges and is also a fossil fuel and having pipes full of explody gas in an earthquake zone has never filled us with confidence. So we were more than happy to rip it out and replace.

The first big challenge was that our old 170l gas cylinder was located inside the house. The hotwater cylinder installer really really wanted to install the new one on the outside of the house which would be very easy, but IMHO would have looked visually terrible given the layout of our property and not really having a hidden utility space where something big and ugly like that could be located.

To fix this, I ended up demolishing the entire cupboard that existed around the old hot water cylinder, providing a space for the new cylinder to go in and then rebuilding a new cupboard around the installed cylinder.

Old 1-star efficiency gas cylinder
300l electric cylinder going in after demolishing the old cupboard

An electrical cylinder can never get more than 100% of theoretical efficiency using electrical resistive heating. So given my love for heat pumps, we paired this new cylinder with a heat pump hot water system to give us a lower running cost solution with potential efficiencies around 300%.

Essentially there’s a small outdoor heat pump unit (like you would have with a typical mini-split system). This pulls heat in from the environment and turns it into hot water. Unfortunately the technology still requires a sizeable cylinder to act as a reservoir hence why we still have a standard 300l cylinder inside, but I hope that at some point they evolve the technology to the point where it can run tankless and be a drop-in replacement for an instantaneous gas boiler.

We looked at some different brands/options. Some brands required their own special cylinders, this seemed to be the models which pumped refrigerant from the outside unit to a special coil inside an interior tank. Instead, we went for a Reclaim which pumps cold water directly to the outside unit, then pumps back hot water in/out of the “solar hot water” ports on most off-the-shelf cylinders. Should the cylinder or heat pump ever need replacing, there are a number of options that we could swap either out for, and not be tied to a single vendor.

Our hot water heat pump

We also kept the ability to be able to failover to the element inside the hotwater cylinder. The electrical circuit has a bypass switch to flip between either the heat pump, or the cylinder’s built in element if a fault ever occurred with the external heat pump.

So far this solution has been working really well, power bills are low and the reclaim unit is very quiet outside. In fact, with the move from gas to electric, our household energy bill decreased on average, despite electricity generally being quite expensive here in NZ.

We then had the scaffolding put up. We were going to need scaffolding edge protection for the roofing work, so decided we’d use the opportunity to also get the house painted which meant scaffolding and walkways around the house.

Scaffolded and ready for re-roof and re-paint
Whilst a single story, the back side of the house is high enough we ended up with a three story scaffold. The cats found this whole assembly very enjoyable and spend more than a few nights climbing all over the place.

Due to some poor organisation with the roofers, the project was supposed to be finished before xmas but ran over into the new year which lead to the frustration of paying extra rent on the scaffold over the holiday period, but it did give a good opportunity for me to use the break to fix up various carpentry issues before the painters came and started.

A whole chunk of the bargeboard came off when removing the old roof, cut a segment to replace it.
Our weatherboards are generally in good condition but had a few areas that needed attention.
I also installed corner-soakers, these small metal pieces that protect where the timber weatherboards join to stop water getting in. Primed them all with metal primer before the painters came and did a full paint of the house.
The butynol on the window boxes didn’t need replacing but it has been prone to causing dark streaks when there’s rain runoff. To fix, used the opportunity to apply a butynol primer and paint coat to seal the surface and stop streaks.

Whilst it took much more time, unexpected water ingress and stress than it should have taken, the end result of the re-roof is excellent. Our roof line is particularly complex and we have plenty of gullys and also a large butynol area in the middle that needed a full replacement.

I found our contractor super tough to deal with due to poor project management and comms but they sure did know how to build a roof. Checked everything against the NZ metal roofing spec and it all looks like they’ve done everything perfectly to code. Crazily enough, replacing an entire roof in NZ? No building consent required! So the home owner really is reliant on trusting the contractor to do the job properly and/or being capable of researching and validating themselves.

Most our entire roof is sarked (covered in timber) which made it easy to get around and work on it. And we had some other good luck, all the timber surface was still in excellent condition and didn’t need any work – with the exception of the butynol section that had been installed with ply that was too thin and so we had it upgraded to the proper standard.

It looks like a lot of our roof was still original, with the roofers pulling off heaps of horsehair underlay that has probably been there for close to 100 years. The steel sheets were super thick as well – in many ways the sheets themselves were fine, the issue was with rust around all the nail points and where the sheets lap/join. Over the decades water had gotten in and caused some serious corrosion in points.

New vs old steel
Example of how weird our roofline gets
New roofline nearing completion whilst in mid-paint
View of the new roof and the new paint scheme in action
Lawn suffering the effect of having steel sheets sitting on it for a few weeks.
Nimbus exploring the roof

The new roof is all done in pre-painted steel so there’s no painting needed for the first 15 years of the roof. It actually looked so sharp I felt bad that I was intending to keep and re-paint the beat up old gutters, so I ripped them all down before the painters arrived and then installed new ones myself at the very end of the project.

I ended up using Marley Stormcloud spouting which conveniently comes in a range of pre-coloured options that matched our roof and wall colours. There’s also a heap of good materials from Marley on how to install it, with the house being fully scaffolded I was able to do it with some help from mum in the course of a weekend.

Spouting lego
Cutting gutter segments to length
Installed gutter and spouting

And like the roof, the spouting being pre-painted saves massively on the labour and hassle and looks far sharper than anything I could achieve with retrospective painting.

Speaking of painting labour – the amount of work that our painting contractor put in was incredible. The cost of painting a whole house in NZ is eye watering but at least I could see where my money was going with this crew, there was so much prep work fixing joins, rust spots, sanding, etc before the actual painting started. Took a crew of 2-3 people about 2 weeks to do the whole house. I used Graham’s Painters in Wellington and was really happy with them.

With the roof, gutters and paint being done, naturally I decided to squeeze in a few more projects for the summer.

Lisa, having got tired of having now 3 different bikes inside the house, gave me an ultimatum that I needed to fix the old shed before I could buy any more bikes. Having looked at it in detail the verdict was that the old wash house / front shed was too far gone to simply repair and I brought a new made-to-order kitset shed that matched the original’s dimensions exactly to replace it. The team at Sanders Cabins & Sheds was able to alter the dimensions of their off-the-shelf product slightly and position the window/doors at the specific spots I wanted which was excellent.

The original wash house for the property. We also took the opportunity to drop the massive karaka tree on the right to really open up the space and trim the neighbours one on the left.
New shed floor going in on the footprint of the old one. I spend 2 days just digging the post holes to get these foundations in.
It took 5 hours for two of us to carry down all the shed pre-fab modules, the H5 piles, concrete and plywood interior.
Kitset shed finished except for the steel roof. The steel roof seems simple but that took another couple of days just to be able to get the sheets aligned right with the awkwardness of the location making climbing on the roof difficult.
Testing the shed for bike fit. Oh and did I mention the 2000Wh solar setup that I added to run the cameras, security, lighting and e-bike inverter?
Having dropped the trees and had the scaffolding picked up, we got a contractor in to re-surface the path (significantly cheaper than a full replacement of the slab)
New shed, new path and a few less overgrown trees

With the shed done, what else? Well we had a slight side quest to dig up and fix a segment of the sewer pipe. Like most activities that involve me digging, it took about 2 days of effort to get down 1.5 meters to where the pipe was located, but that sure bet the thousands it would cost to remotely re-surface the pipe.

Not sure those roots are supposed to be inside of the pipe…

And I had to learn how to plaster to fix the previous massive missing section of the kitchen roof that was damaged by the old roof leaking. Oh and you might notice that the kitchen has changed colour, that’s thanks to Lisa pulling off all the doors and painting them as well as fitting new handles.

New interior roof, new paint job. Still yet to replace the cork flooring, but it’s on the list…

We managed to complete the full set of projects (roof, scaffold, paint, path, shed, hot water, cooktop etc) for a bit under $100k NZD, but this was possible only by doing a bunch of stuff myself like the gutters, plastering, shed, digging and house carpentry. I had estimated that we’d run about 20% over budget with unexpected costs and that ended up being almost perfectly accurate. Stuff like higher than expected electrical costs, the decision to replace the gutters, other miscellaneous materials, etc.

Being smart about sequence of work events and shopping around for trades also helped massively. For more than one of the trades we received quotes that were twice as high as the ones we eventually selected. Sometimes you get what you pay for, but sometimes people are just taking the piss. Worth shopping around for these big ticket items.

My favourite was the painter who came to quote and turned up in a huff because he couldn’t park right outside the house (he just parked his ute on the yellow lines anyway like a classic tradie), proceeded to diss the house as “needing a lot of work” infront of me and then quoting twice as high as another firm. For some strange reason he didn’t get the job.

Finally, having finished up the bulk of this project I treated myself to a new car and made sure to get out a heap to make up for the prior summer being consumed entirely by the renovation chaos.

My new Ravioli off on an adventure
Relaxing after a 90km round trip around the Rimutaka-Wild Coast trail.
Hitting the Makara Peak MTB trails

Aside from it’s bike carrying capabilities and gas thriftiness, one of the big aspects of buying the RAV4 2021 Hybrid was getting something with AWD for handling the mountains in winter – and then promptly only managed to spend 1 day up the mountain thanks to COVID-19 lockdowns. But I’m ready for 2022 season!

A perfect day on the mountain in 2021

Where does this leave the house? In a pretty good state now. There’s always something more of course, I have some interior work to finish off and it’s looking increasingly likely that we’ll need to do a bathroom replacement in the next few years due to everything starting to reach end of life in there, but all critical stuff is sorted for now and we’ve gone through 2 winters now without water coming through the roof anymore which is nice.

And I got my bike shed at last! Which has been wonderful, finally cleaned all the junk out of the laundry and have a proper space for bike tools, parts and of course the bikes themselves.

Added some garage carpet to make it feel extra homely

I’ve even cleaned up the older tool shed so it’s actually possible to navigate and find things in there, so that makes two quite usable spaces which is really handy given we have a smallish house at around 140m2.

Downside of an older house.. this shed is almost entirely just tools and materials needed to maintain the house and property. So you get a cool shed but… end up filling it with stuff just to look after the house.
Completed view of the front of the house
Completed view of the back of the house

Introduction to Xiaomi Zigbee IoT/Smart Home devices

I’ve recently been experimenting with Xiaomi Zigbee IoT/Smart Home devices. These devices are super affordable (approx $20-55NZD) and make it very easy and affordable to upgrade a home with useful smart devices.

My plan is to do a more detailed blog post at a later stage, but if you’re interested in learning more, I recorded a talk I made at the Wellington Home Automation Meetup a few weeks back that introduces these products and how I’m using them.

 

The bathroom fan debacle

I completed this project a while back and had the images saved up for a blog post – somehow almost a year has gone by since then in a blink of an eye. But anyway, enjoy this delayed update about the exciting world of bathroom fans!

If our house had one deficiency, it would be that the layout of the property has resulted in a rather small and interior only bathroom. Since this bathroom has no direct access to any outside walls for easy ventilation via windows, it instead had a pretty chunky fan already installed when we purchased the property to extract all the shower moisture and other undesirable elements.

By my estimation, the fan would be a good 20 years old and whilst it was doing a good job of extracting air from the bathroom it had two major issues:

  1. Whilst it extracted air successfully from the bathroom, it didn’t send it anywhere useful – instead it was dumping all the moisture directly into the attic space making the attic (and by extension, the whole house) damp.
  2. The bathroom roof features a large skylight which is great for making the room feel light and more spacious than it actually is, but it also acts as a giant shower dome, with steam going up into the skylight space and condensing as the fan is not at the highest point of the roof.

The second issue above really started causing significant issues, particularly since the moisture was damaging the paint and plasterboard and with a small bathroom that makes it almost impossible to extend a ladder and reach the super high ceilings, mould was becoming an issue due to inability to access to tackle the moisture.

 

The situation required remedial work and one day the oldĀ fan decided to make the decision easy with the fan cover getting brittle enough that it suddenly fell out of the roof into the bath one evening without warning with a loud crash.

Unscheduled rapid disassembly

 

For this replacement project, I started with tackling the ventilation problem to make sure the air would actually get extracted out of the house, rather than into the attic (side note: pretty sure venting bathrooms into attics is now forbidden under the building codes for any new installs).

To do this, I brought a 150mm Simx/Manrose Thru Roof Cowl Kit – these can be found at consumer hardware stores and it’s a kit that consists of a plastic tube, the metal cowl ontop and a suitable rubber mounting boot and assorted hardware.

Going through the roof was the only option on this property. Not only is the bathroom in the middle of the house, even if I ran a long ducting run to the nearest walls, there’s no soffits or other tidy location to install the vent without damaging the character of the property.

Who cares about the iPhone, *this* is the unboxing you’ve been holding out for.

Installing this was… fun. I purchased my new most-favourite-thing-ever, a reciprocating saw (also called a sabre saw) in order to cut a hole in the roof. This tool has gone on to work hard in a large number of other projects and I consider it an extremely good investment given it’s versatility.

Cut all the things!

One of the quirks of our property being approximately 100 years old is that the roof is sarked with timbers which makes it extremely solid – a proper house, from a more refined age. They stopped building houses like this a long time ago, I think the whole non-sustainable forestry part become a slight issue…

In this situation the solid build both helped and hindered – trying to cut through corrugated iron is a lot easier when there’s not 20mm of native hardwood underneath it as the saw has the habit of picking up the iron and vibrating it like crazy whilst trying to cut the timbers.

But the upside is that it meant I could screw the roof vent directly into the timber and be assured of a tight and long-lasting fit, whereas if I had only floating iron sheets it would have been a lot tricker to get a really tight fit… If this had been the case like in a more modern property, I’d have probably brought some plywood sheets and run them across the rafters to provide a solid surface for screwing the vent into for a similar effect.

You can get an idea of how solid the house is from this photo inside the attic. In this photo the vent has been installed and ducting attached.

Once I cut the roof hole, I sealed the vent kit rubber boot thoroughly with silicone, with a layer between the boot and the iron sheets, as well as around the edge of the boot and the plastic tube.

The rubber boot has a metal strip allowing it to be bent to fit the corrugated iron snugly. Once the screws went in, it’s a very tight seal and the silicone makes 100% sure it’s sealed.

Note the diagonal placement – this is intentional since it ensures you don’t end up with a pool of water collecting at the top of the boot, which could happen if you placed it square.

The new vent next to the bathroom skylight. You can see the interior intake through the skylight.

You’ll notice that I’ve cut the hole overlapping two separate sheets. This… isn’t ideal, I’d much rather have cut into a single sheet (easier to seal, less to go wrong as the sheets expand and contract) but I was trying to utilise an existing hole that was already cut in the sarking timbers for what must have been a small vent (maybe an overflow pipe?) in the past to minimise the amount of cutting needed.

This placement also caused another small annoyance for me, which is that the vent is not quite 100% straight and you can notice it sometimes. It’s not an issue for water ingress in the rain, but it annoys me not being 100% perfect. That being said, I’ve had trades install other vents in the property (future project post coming!) and they didn’t get it properly straight either, so I feel somewhat vindicated.

Slightly wonky vent will annoy me everyday forever more…. but if I’ve learnt anything re DIY, don’t fuck with anything that ain’t broke.

 

To connect the fan to the vent, I brought some insulated ducting. It’s important to use insulated ducting for this, rather than the cheaper uninsulated stuff, since bathroom air is warm and moist – if the ducting is not insulated, you are likely to suffer condensation in the duct as the air cools when it transits through the cooler attic temperatures. By keeping it as warm as possible on it’s way out you can avoid this.

I was worried about some condensation occurring in the vent tube itself – I can’t insulate outside of the roof after all – but this fortunately hasn’t been a problem. Additionally there was some concern that the roof cowl wouldn’t be enough to keep out rain in Wellington winds, but this also hasn’t been an issue – it could be a different situation in more exposed areas of the city and there are cowl fittings that are more suited for unfriendly wind conditions if this was the case.

 

Next I had to sort out a new fan. I was tempted to keep the existing fan given it’s strong air throughput and the motor still running fine, but I couldn’t easily find a replacement front for it, and the back was completely exposed so there was no easy way to fit the ducting to the back of the fan.

I ended up buying a 250mm “high pressure” fan, but unfortunately this didn’t work out well for me. Despite being described as high pressure, I can confirm that these consumer-available bathroom fans are absolutely useless and not worth buying if you want anything more than a faint breeze.

I had it in place for 1 week, during which time we not only quickly noticed it struggling to remove the steam from the room, but that it was also slowing filling up with water that was condensing in the fan as it struggled the clear the room.

First iteration. Note the side exiting fan which required twisted ducting – not ideal. You can also see the hole in the sarking is larger than needed – that’s because there was a pre-existing hole that I took advantage of which was longer than I needed.

Unfortunately given how much of a complete failure this fan had been, I had to remove it and find an alternative.

 

The solution was a 150mm pro-series Simix inline fan capable of delivering 166l/s (597m3/hr) air throughput. For comparison, the previous attempted fan was maybe 69l/s (250m3/hr) at best and even that seems dubious given how poorly it performed.

Nimbus is a big fan of this model.

I couldn’t find these at any consumer hardware store and ended up taking advantage of a friend with an electrical trade account who was able to place an order with the supplier for me.

The one key difference with this solution vs my previous attempt is that the fan is inline, which means the bathroom needed a vent installed, with ducting from the intake vent to the fan, then ducting to the outlet vent. This does have some noise advantages since you can place the fan motor further away from the intake.

Second iteration. Mounting it on framing timber is a little overkill but I had framing timber and not plywood handy. Because of the solid roof, I found it easier to mount to the underside of the roof, rather than building a platform on the attic floor.

This solution worked much better – the fan is able to extract a considerable amount of air and whilst a bit noisy due to high RPM and small diameter, it does a good job of clearing the bathroom throughout the shower and not letting it build up too much moisture.

When researching this project, it was suggestedĀ  that you shouldn’t be clever and mix duct sizes (eg a 200mm fan into a 150mm vent), so I kept the same spec throughout – if I had gone for a larger roof vent and duct in the beginning, I might have gone with something larger to get more throughput but also larger fans tend to be quieter (as a general rule).

The other big positive of this approach is that I was able to solve the skylight condensing problem by putting the new intake vent directly into the side of the skylight wall to rapidly extract out the air.

This is working extremely well – whilst we have the existing damage from past moisture build up which will require remedial work (complete repaint, maybe some new plastering), since putting in this new vent we’ve had very little moisture build up since the fan keeps the air moving in the skylight preventing condensation. And since heat rises, all the steam from the shower naturally gravitates towards the vent anyway.

This photo illustrates the issue with the placement of the old vs new fan – the old one did nothing for all the stream that wafted up into the skylight space, vs the new one keeping that space clear.

I found it really hard to find an intake vent that wasn’t horribly ugly and plasticky, so ended up paying a bit of a premium for an aluminium model. It ended up being a right pain to install so maybe I should have gone for a cheap nasty plastic 150mm that would have been simple to fit, but I think it was worth it and looks good (once I fix all the paintwork anyway). I even managed to get it dead centre which given I was cutting it out from inside the attic due to inability to get ladder high enough in the bathroom was a pretty good outcome.

 

Anyway despite the challenges, I’m pretty happy with this setup now. It’s working reliably, I’ve checked the ducting a few times to make sure there’s been no moisture build up or water ingress from outside (both good!) so I’m expecting this solution to last for a long time.

I still need to fix the plasterboard and paint job in the bathroom. It’s kind of stuck pending access to a more flexible ladder/indoor scaffold type system just due to the height of the bathroom roof and very limited placement points for ladders. Still it annoys me daily so it’ll get fixed sooner or later when I get really sick of it looking so bad.

Rough cost for the project was around $500-600 NZD in parts – the most expensive bits being the fan motor, and then the roof vent kit – a wall vent solution would be a fair bit cheaper.

If I was doing this project again from scratch, I’d probably have done a few things differently.

  • I’d almost certainly have considered getting the bigger model and going for a 200mm fan able to shift 272l/s (980m3/hr) of air. The current model is good, but I’d almost have enjoyed the bathroom being like a vacuum cleaner for maximum dryness. And the larger fan size should be a bit quieter.
  • I utilised the existing hardwired appliance circuit as a straight replacement of one fan for another, but it would have been good to get a timer fan installed, to keep it running for a given time period following the fan being switched off. This is something I might end up getting an electrician to install for me in future anyway, but I might have been able to save some money getting a model of fan with the timer circuit build in, vs having to now buy a timer module for the circuit.
  • I don’t love the ducting install. I ended up with two 90 degree bends which were unavoidable due to the original hole being intended for a fan directly below the hole, but I’d have preferred an almost straight run to ensure minimal workload for the fan (maybe some noise reduction too?). This could have been easily accomplished by installing the fan further up the roof line and running the duct straight from the interior vent, through the fan, then up and out the roof. But it wasn’t worth sealing one hole and cutting another to fix.
  • If I ever build a house, I’m making sure the bathrooms have at least one exterior wall to make ventilation so much simpler!
  • I put in all the vent bolts (hex head) using an automotive socket set by hand. This works totally fine but just takes ages, so an impact driver would have been a nice addition to the tool kit. That being said, I’ve since done other hex head screws using a socket adaptor drill bit which allows me to use the cordless drill to drive hex head screws, although admittedly lacking the high torque of a proper impact driver.

Surveillance State “at home” Edition

A number of months ago I purchased a series of Ubiquiti UniFi video surveillance cameras.Ā These are standard IP ethernet cameras and uses a free (as-in-beer) server agent that runs happily on GNU/Linux to manage the recording and motion detection, which makes them a much more attractive offering than other proprietary systems that use their own specific NVRs.

Once I first got them I hooked them up in the house to test with the intention of installing properly on the outside of the house. This plan got delayed somewhat when we adopted two lovely kittens which immediately removed any incentive I had to actually install them properly since it was just too much fun watching the cats rather than keeping an eye out for axe murderers roaming the property.

I had originally ordered the 720p model, but during this time of kitten watching, Ubiquiti brought out a new 1080p “g3” model which provides better resolution as well as also offering a much nicer looking and easier to install form factor – so I now have a mix of both generations.

The following video shows some footage taken from the older 720p model:

During this test phase we also captured the November 2016 Wellington earthquake on the cameras using a mix of both generation of camera:

Finally with the New Year break, I got the time and motivation to get back up into the attic and install the cameras properly. This wasn’t a technically challenging task – mostly just a case of running cabling, but it’s a right PITA due to the difficulty of moving around in my attic thanks to heaps of water pipes, electrical wires, data wires and joists all hidden under a good foot or two of insulation.

 

 

On the plus side, the technical requirements for the cameras are pretty simple.Ā Each camera is a Power-over-Ethernet (PoE) device, which means it gets both data and power via a single cable, which makes installation simple – no mains electrical wiring, just need to get a single cat6 cable to wherever you want the camera to sit. The camera then connects to the switch and of course the server running the included software.

I am aware of some vendors selling wireless camerasĀ that use WiFi with a battery that needs to be recharged every so often. I can see the use and appeal for renters, but as a home owner, a hard wired system is going to be much easier and more reliable in the long term.

Ubiquiti sell the camera either with or without a PoE adaptor.Ā Using the included PoE adaptor means you can connect them to essentially any existing switch, but if installing a number of camerasĀ this can create a cable management nightmare. I’d strongly recommend a PoE switch if installing more than 5 cameras, even taking into account their higher cost.

A PoE switch suddenly didn’t seem like such an expensive investment…

The easiest installation was the remote shed camera. Conveniently the shed has mains electricalĀ wiring, but I needed to install a wireless AP to connect back to the house as running ethernet out thereĀ is just a bit too difficult.

I usedĀ Ubiquiti’s airGW-LR product which is a low cost access point that is designed to clip to their standard PoE supply. End result is a really tidy setup with a single power supply for both devices and with both devices mounted on a robust bracket for easy installation.

720p camera + airGW + PoE supply

The house cameras were a bit more work. It took me roughly a day to run cabling through the attic – my house isn’t easy to move in the roof or floor space so it takes longer than some others. Also tip – it’s much easier running cabling *before* the insulation is installed, so if you’re thinking of doing both, install the ethernet in advance.

High ceilings and a small attic entrance is just the start of the hassles ofĀ running cabling.

The annoying moment when you drill into a stud and end up with a hole that needs filling again. (with solid hardwood walls and ceilings, stud finders don’t work well at my place)

Once the cable run had been completed, I crimped the outside ends with RJ45 connectors for the cameras and then proceeded to take apartĀ the existing patch panel, which also required removing most of the gear in the comms cabinet to free up room to work.

Couple tips for anyone else doing this:

  • I left plenty of excess cable on my ethernet runs. This allowed me to crimp the camera end whilst standing comfortably on the ground, then when I installed the camera I just pushed up all the excess into attic. Ethernet cable is cheap compared to one’s time messing around up at the tops of ladders.
  • The same applies at the patch panel – make sure to leave enough slack to allow you to easily take the patch panel off and work on it in the future – you can see from the picture below I have a good length spare that comes out of the wall.
  • Remember to wire the RJ45 connectors and the patch panel to the same standard – I managed to do T568B at the camera end and T568A at the patch panel on my first attempt.
  • Test each cable as you complete the wiring. Because of this I caught the above issue on the first camera and it saved me a lot of pain in future. A cheap ethernet tester can be found online for ~$10 and is worth having in your tool kit.

Down to only 4/24 ports free on the patch panel! I expect the last 4 will be consumed byĀ WiGig/802.11ad in future, since it will require an AP per-room in order to get high performance, I might even need a second patch panel in future… good thing I brought the large wall mounted cabinet.

 

With the cabling done, I connected all the PoE adaptors. These are a bit of a PITA if you’re using a rack – you could get a small rackmount shelf with holes and cable tie down, but I went for cable tying them to the outside of the cabinet.

I also colour coded the output from the PoE adaptors. You need to be careful with passive PoE adaptors, you can potentially damage computers and network equipment if you connect them to the adaptor by mistake so I used the colour coding to make it very clear what cables are what.

Finished cabling installation. About as tidy as I can get it in here without moving to using custom length patch cables…. but crimping 30+ patch cables by hand isn’t my idea of a good time.

 

Having completed the cabling and putting together the networking gear and PoE adaptors, I could finally install the cameras themselves. This isn’t particularly hard, basically just need to be able to screw something to the side of the house and then aim the camera in the right position.

The older 720p model is the most annoying to install as it requires adjusting everything using an allen key, plus the cable must be exposed with a drip loop. It’s also more of an eyesore which is a mixed bag – you get better deterrence aspect, but it can look a bit ugly on the house.

The newer model is more aesthetically pleasing, but it’s possible some people might not realise it’s a camera which could be a downside for deterrence.

That being said, they look OK when installed on the house – certainly no worse than the ugly alarm and sensor lights you get on many houses. I even ended up putting one inside to give me complete visibility of the hallway linking every room in the house and it’s not much more visibleĀ than a large alarm PIR sensor.

Some additional features worth noting:

  • All the cameras have built in IR, which means they provide decent footage, even at night time. The cameras switch an IR filter on/off automaticallyĀ as required.
  • All the cameras have built in microphones. Whilst they capture a lot of background wind noise, they’re also quite good at picking up conversations even when outside – it’s a handy tool for gathering intel on any unwanted guests.

 

With all the hardware completed, onto the software. Ubiquiti supply their server software free-of-charge. It’s easy enough to download and install, but if you have Puppetised your home server (of course you have right?) I have a Puppet module here for you.

 

Generally I’ve found the software solution (including the iOS mobile app) to be pretty good, but there are two main issues to be aware of with it:

  1. First is that the motion detection is pretty dumb and works on percentage of image changed. This means windy areas with lots of greenery get lots of unwanted recordings made. It doesnā€™t causing technical issues, but it does make for a noisy set of recordings – donā€™t expect it to *only* record events of note, youā€™ll get all the burglars and axe murderers, but also every neighbourhood cat and the nearby trees on windy days. Oh and night time you get lots of footage of moths when they fly close to the camera with the IR night vision on.

  2. Second is that I found a software bug in theĀ mobile apps where they did not validate SSL certs properlyĀ and got a very poor response from Ubiquiti. That being said one of their reps recently claimed they’ve hired more security staff to deal with their poor responsiveness, so let’s see what happens on this front.

 

 

One feature which is strangely absent, is the lack of support for automatically uploading recordings to a cloud storage service. It’s not possible for everyone, but if on a fast connection (eg VDSL, UFB) it’s worth uploading all recordings to something like Amazon S3 so that an attacker can’t subsequently break in and remove the recording hardware.

My approach was setting up lsyncd to listen to inotify events from Linux every time a video file is written to disk and then quickly copy that file up into Amazon S3 where itĀ remains for a prolonged period.

If you can’t achieve this due to poor internet performance, your best bet is to put the video recording server in a difficult to find and/or access location, sufficient to prevent the casual intruder from finding it. If you have a proper monitored alarm system they shouldn’t be lingering long enough to find it.

 

Stability seems good. I’ve been running these cameras since April and have never had the server agent or the cameras crash or fail to record. I’m using a Mac Mini for the camera serverĀ but you can always buy an embedded black-box NVRĀ solution from Ubiquiti themselves. If you’re on a budget, a second hand Mac Mini or Intel NUC might be better value for money – just make sure it’s 64bit, not an older gen 32bit device.

 

Pipegate

The joys of home ownership never stop giving and I’ve been having some fun with my old nemesis of plumbing

A few weeks back we got a rather curt letter from Wellington Water/Wellington City Council (WCC) advising us that they had detected a leak on our property at location Ā unknown and that they would fine us large amounts if not rectified in 14 days. The letter proceeded to give no other useful information on how this was detected or how a home owner should find said leak.

 

After following up via phone, it turns out they’ve been doing acoustic listening to the pipes and based on the audio taken at several different times they’re pretty certain there was a leak *somewhere*.

After doing some tests with our plumber, we were able to rule out the house being at fault, however that left a 60m water pipe up to the street, an even bigger headache to replace than the under-house plumbing given it’s probably buried under concrete and trees.

The most likely cause of any leak for us is Duxquest plumbing, a known defective product from the 70s/80s. Thankfully all the Duxquest inside the house has been removed by previous owners, but we were very concerned that our main water pipe could also be Duxquest (turns out they used it for the main feeds as well).

We decided to dig a new trench ourselves to save money by not having to have the expensive timeĀ of a plumber spent digging trenches and (strategically) started at the house end where there are the most joins in the pipe.

It's going to be a long day...

It’s going to be a long day…

Or maybe not - is that water squirting out of the ground??!?

Or maybe not – is that water squirting out of the ground??!?

So we got lucky very early in. We started digging right by the toby at the house given it was more likely any split would be towards the house and also it’s easiest to dig up here than the other end that’s buried in concrete.

The ground on the surface wasn’t damp or wet so we had no idea the leak was right below where we would start digging. It looks like a lot of the ground around the front of the house is sand/gravel infill that has been used, which resulted in the water draining away underground rather than coming to the surface. That being said, with the size of the leak I’m pretty amazed that it wasn’t a mud-bath at the surface.

Fffffff duxquest!!

Fffffff duxquest!!

The leak itself is in the Duxquest black joiner/branch pipe which comes off the main feed before the toby. It seems someone decided that it would be a great idea to feed the garden pipes of the house from a fork *before* the main toby so that it can’t be turned off easily, which is also exactly where it split meaning we couldn’t tell if the leak was this extension or the main pipe.

The thick grey pipe is the main water feed that goes to the toby (below the white cap to the right) and thankfully this dig confirms that it’s not Duxquest but more modern PVC which shouldn’t have any structural issues long term.

Finding the leak so quickly was good, but this still left me with a hole in the ground that would rapidly fill with water whenever the mains was turned back on. And being a weekend, I didn’t particularly want to have to call out an emergency plumber to seal the leak…

The good news is that the joiner used has the same screw fitting as a garden tap, which made it very easy to “cap” it by attaching a garden hose for the weekend!

Unscrewed

Hmm that looks oddly like a garden tap screw…

When number 8 wire doesn't suit, use pipe!

Huzzah!

 

Subsequently I’ve had the plumber come and replace all the remaining Duxquest under the house with modern PVC piping and copper joiners to eliminate the repeat of this headache. And I also had the toby moved so that it’s now positioned before the split so that it’s possible to isolate the 60m water main to the houseĀ which will make it a lot easier if we ever have a break in future.

You too, could have this stylish muddy hole for only $800!

You too, could have this stylish muddy hole for only $800!

 

I’m happy we got the leak fixed, but WCC made this way harder than it should have been. To date all my interactions with WCC have been quite positive (local government being helpful, it’s crazy!), but their state-owned-entity of Wellington Water leaves a lot to be desired with theirĀ communication standards.

Despite being in communication with the company that detected the leak and giving updates on our repairs we continued to get threatening form letters detailing all the fines in-store for us and then when we finally completed the repairs had zero further communications or even acknowledgment from them.

At least it’s just fixed now and I shouldn’t have any plumbing issues to worry about for a while… in theory.

10 months in

It’s been almost 10 months since Lisa and I brought our current house and moved in. Things are going well, having our own place and not paying a landlord is a fantastic and freeing feeling,Ā but home ownership certainly isn’t a free ride and the amount of work it generates is quite incredible.

So what’s been happening around Carr Manor since we moved in?

Home sweet home

Can’t beat Wellington on a good day!

Generally the house is in good shape, most of my time has been spent in the grounds of the estate clearing paths, overgrown vegetation and various other missions. However we have had a couple smaller issues with the house itself.

 

The most serious one is that part of the iron roof in the house was leaking due to what looks like a number of differentĀ patch jobs combined with a nice unhealthy dose of rust.

Hmm cracks in the roof that let water in == bad right?

Hmm cracks in the roof that let water in == bad right?

The outside doesn't look a whole lot better.

The outside doesn’t look a whole lot better.

The “proper” fix is that this section of roof needs replacing at some point as it’s technically well-past EOL, but roof replacement is expensive and a PITA, so I’ve fixed the issue by stripped off as much rust as I could and then re-sealing the roof using Mineral Brush-On Underbody Seal.

Incase you’re wondering, yes, the same stuff that you can use on cars. It’s basically liquidĀ tar, completely waterproof and ever so wonderful at sealing leaky roofs. I liberally applied a few cans over flashings, patches and the iron itself getting a nice thick seal.

Repair!

Repair!

The same stuff did wonders on the rusted shed roof flashing as well.

The same stuff did wonders on the rusted shed roof flashing as well.

Up next I need to complete a repaint of both sheds and the house roof. I’m probably going to do a small job in whatever colour I have lying around for the worst part of the roof and then go over the whole roof again at a later stage when we decide on a colour for the full repaint.

 

The other issue we had was that one of the window hinges had rusted out leaving us with a window that wouldn’t open/close properly.

So rusty :-/

I’m not expert, but I don’t think hinges are supposed to look like this….

This was a tricky one to fix – the hinge and the screws were so rusted out I couldn’t even remove them, in the end I removed the window simply by tearing the hinge apart when I pulled on it leaving a shower of rust and more disturbingly, cockroaches that had been living amongst the bubbled rust.

This left me with two parts of metal hinge stuck in the wall and on the window frame held in by screws that would no longer turn – or in some cases, even lacked heads entirely.

To get them out, I put a very small drill bit into the electric drill and drilled out the screw right down the middle of it. It’s pretty straightforwards once you get it going, but it was a bit tricky to get started – I ended up using the smallest bit I had to make a pilot hole/groove in the screw head, and then upsized the bit to drill in through the screw. Once done, the metal remains tend to just fall out and come out with a little prodding.

I’ve since replaced it with a shiny new hinge and stainless steel screws which should last a lot longer than their predecessors.

Shiny new

Shiny new hardware

 

Painting has been an “interesting” learning experience, I’ve found it the hardest skill to pickup since it’s just so time consuming and you have to take such extreme care to avoid dripping any paint on other surfaces.

One of my earliest painting jobs was doing the lower gate. This gate spends a lot of time in the shade and even in spring was feeling damp and waterlogged and generally wasn’t looking that sharp – especially the fact the bolt was a pile of rust barely holding together.

The rustic delight of unfinished timber.

I’m sure unfinished timber looks great when it’s first built, but the moss dirt and damp doesn’t lead to it aging well.

It's like new!

Much sharper!

Things like the gate take time and need care, but it’s nothing compared to the absolute frustration of painting window frames where a few mm to the wrong side or a stray bristle leads to paint being smeared across the glass.

I did the french doors initially as the paint had peeled and was starting to expose the timber to the elements, some of the putty had even fallen out and needed replacing.

Probably the most frustrating thing I've ever had to do.

Applying painter’s tape to this is one of the most frustrating things I’ve ever had to do :-/

Because I was painting around glass, I applied painter’s tape the whole thing before hand. It took hours, incredibly frustrating and I feel that the end result wasn’t particularly great.

I’ve since found that IĀ can get a pretty tidy result using a sash/trim brush and taking extreme care not to bump the glass, but it is tricky and mistakes do happen. I’m figuring with enough practice I’ll get better at windows… and I have plenty of practice waiting for me with a full house paint job pending. Of course I could pay someone to do it, but at $15k+ for a re-paint, I’m pretty keen to see if I can tackle it myself….

 

The shed works haven’t proceeded much – I had the noble goal of completely repairing it over summer, but that time just varnished sorting out various other bits and pieces.

On the plus side, thanks to help from one of my colleagues, the shed has been dug out from it’s previously buried state and the rot and damage exposed – next step is to tear off the rotten weatherboards and doors and replace them with new ones, before repainting the whole shed.

Dug out shed

A small 1meter retaining wall would have been more than enough to protect the shed, but instead the earth has ended up piled around it causing it to rot and collapse.

 

I also had help from dad and toppled the mid-size trees that were in-between the shed and the path. Not only were they blocking out light, but they were also going to be a clear issue to shed and path integrity in the future as they got bigger.

Much tidier!

Much tidier! Just need to fix the shed itself now…

I’m still really keen to get this shed fixed so intend to make a start on measuring and sourcing the timber soon(ish) and maybe taking a few days off work to line up a block of time to really attack and fix it up.

 

A more pressing issue has been our pathways. We have two long 30-40meter concrete paths, a long ramped one (around 20-30 degree slope) up to the upper street and carpad and another zig-zag path with a mix of ramps and steps heading down to the lower street where the bus stop is.

Both paths are not in the best condition. The lower one requires a complete replacement, it’s probably around 80 years old and the non-reinforced concrete has cracked and shifted all over the place.

The upper one is more structurally intact, but has it’s own share of issues. The first most serious issue is that the steeper upmost end getsĀ incredibly slippery in winter. It seems that although the concrete has been brush-finished whenever it rains, any grip it had just vanishes and it basically becomes a slide.

Jethro vs Autumn

Jethro vs Autumn

Naturally slipping to a broken/leg/face/life isn’t ideal and we’ve been looking at options to fix it. We could convert the steepest bit from a ramp to steps, but steps have their own safety issues and we aren’t keen the lose the ramp as it’s the best way for getting large/heavy items to/from the house.

So a couple months ago I put down some Resene Non-slip Deck & Path which is a tough non-slippery paint product that basically includes a whole heap of sand which turns the smooth concrete path into something more like fineĀ sandpaper.

We weren’t too sure about how good it would be, so we put down a 0.5l strip to test it out on the worst most part of the path.

A/B Testing IRL

A/B Testing IRL

It doesn’t feel that different to brushed concrete in the dry, but in the wet the difference is night & day and you really do feel a bit more attached to the path. We’ll still need to invest in a decent handrail and fence, but this goes a long way towards an elegant fix.

I’ve since brought another 10l and painted the upper portion, essentially all the “good” concrete we have. I thought that it might be too dark but actually it looks very sharp and once we put a new fence up (maybe white picket?) it will look very clean and tidy.

Slick new path!

Old concrete, as good as new! :-)

The other ~30meters down to the house isn’t in such good shape, the surface is quite uneven in places and it’s missing chunks. We have a project to do to repair or replace the rest of it, once done the intention will be to paint the rest of the path in the same colourĀ and it should look and feel great.

 

All this work requires a fair few tools, I’ve finally clean up the dining room where they had been accumulating and they’re now living properly in the shed.

Shed

Shed

One of the most interesting lessons I’ve had so far is that buying decent tools is often far cheaper than hiring tradies to do something for you – generally tools are cheap, even decent ones, but labour is incredibly expensive.

CHAIN SAW

Why yes, that is a hardwood lamppost that I’m chainsawing.

The same thing applies to parts, it’s generally cheaper to just buy a new replacement of something than it is to fix it – I’m used to this from the IT world, but didn’t expect it from IRL.

In our cases, we had a shower mixer that decided to start letting a constant small stream of water through rather than shutting off properly.

Jethro vs Shower

Jethro vs Shower

Taking it apart and even removing it from the wall entirely isn’t too tricky, but I found after removing it all that the issue wasn’t anything trivial like needing a new o-ring and had to call out the plumbers.

Plumbers took it out, look at and it and are all “yeah that needs a new part”, so I ended up paying for the part + the labour – I’d have been better off just buying the whole new part myself and fitting it rather than trying to fix it.

 

Never underestimate the amount of waste you produce moving into a new place. I filled a skip with 1/3 concrete rubble, 1/3 polystyrene and 1/3 misc waste and there’s still another skip worth of debris around the property, possibly more once I tear all the rotten timber out of the shed.

Polystyrene is my number one enemy right now, almost everything we had shipped to the house when we moved in came with some and it’s crumbly and completely non-recyclable for good measure >:-(.

Where did all this junk come from?

Where did all this junk come from?

 

 

Finally on the inside of the house things haven’t progressed much.Ā Lisa has been working on the interior decor and accessoriesĀ whilst I’ve done exciting things like overseeing the installation of insulation and fixing the loo in the laundry. :-/

Warming sheep fluff!

Warming sheep fluff!

I hate plumbing!

I hate plumbing!

I also had a whole bunch of fun with the locks – when we moved in I had the locksmith change the tumblers, but we’ve since found the locks were pretty worn out and the tail pieces inside started failing, so I had to buy whole new locks and fit them.

Turns out, whole new locks is way cheaper than getting the locksmith out to change the tumblers. If you’re moving into an older place, I’d recommend consider just getting new locks instead since the old ones probably aren’t much good either.

The only downside is that the sizing was slightly different, so I had to do some “creative woodwork” using a drill bit as a file (I didn’t have a file…. or the right size drill bit. A bit dodgy, but worked out OK).

It's not just the IT world where the lack of standards means a bit of hackery to make stuff function.

It’s not just the IT world where the lack of standards means a bit of hackery to make stuff function.

Tidy job at the end of the day!

Tidy job at the end of the day!

 

A lot of this work has been annoying in that it’s not directly visible as an improvement, but it’s all been important stuff that needed doing. I’m hoping to spend the next few months getting stuck into some of the bigger improvements like fixing the paths, sheds, etc which will be a lot more visible.

Until then, need to make more evenings to just sit back, relax and enjoy having our own place – feels like I’ve been just far too busy lately.

Beer time

Beer time

Installing Cloud Pipes

One of the essential upgrades for the house has been the installation of computer network data cabling throughout the house. Whilst some helpful individual went to the effort of installing phone jacks in almost every room, an analogue phone line in every room isn’t that useful to me in 2014, so I decided to get the place upgraded with something a little more modern.

A few people have asked me why I didn’t go entirely WiFi instead – granted it’s a valid question given that most devices now come with WiFi and no wired ethernet (curses Apple Macbooks), but I figured there’s still some good reasons to install cables through the house:

  1. WiFi still needs some copper cables to backhaul data and even if mesh networking evolved to be good enough to eliminate the backhaul link requirements, there’s no wireless power yet, so POE is damn handy.
  2. With ports in every room, I can always plug in more APs in any room to get better coverage. Could be very handy if new tech like WiGig takes off, which may require an access point in each room due to poor performance through walls.
  3. The current WiFi tech is acceptable for transferring current HD video content over the network, but it’s not going to handle ultra-high-def content like 4K footage very well.
  4. The Cat6 cabling I’ve installed should be capable of up to 10Gbit speeds. It’s going to take us a while to get 10Gbit with wireless.

Only time will tell if I was as foolish as those who installed coaxial cabling for their 10mbit networks before they got bitten by the uptake of Cat5, but I suspect it should be useful for another 10-20 years at least. After that, who knows….

Since I’m putting the cabling into existing clad rooms, I lack the convenience of a newly built or renovated property where I can simply run cables at my leisure and put the plasterboard up afterwards. On the plus side, unlike a modern house, mine has a number of gaps from items like old brick chimneys that have been removed and a number of walls that lack the conventional 2×4 horizontal studs, which offers some places where cables can be dropped from ceiling to floor uninterrupted.

With this in mind, I gathered my tools, geared up with confidence, and set off on my cabling adventure.

OPen wide

“Trust me, I know what I’m doing”

Only one problem – one quick look up into the attic quickly confirmed for me that “yes, I do certainly dislike heights” and “yes, I also really do dislike confined spaces that are dark and smell funny”.

To overcome these problems, I recruited the services of the future-father-in-law who has a lot of experience running TV antenna cabling, so is pretty comfortable moving around in an attic and drilling holes into walls. Thankfully he agreed to assist me (thanks Neville!!) with climbing up and around the attic which allowed me to move to the next step – getting the cables in.

It's high up here :-/

3.5 metre ceilings mean you need to get comfortable with working at the top of a ladder

I decided that I wanted 4x cables into the lounge, 4x into the back bedroom/office, and then 2x into the other 3 bedrooms. I pondered just putting 4x everywhere, but had a whole bunch of 2x plates and I figure the bedrooms aren’t likely to host a small server farm any time soon. Again, one of those things where I might be cursing myself in the future, or might not ever be an issue.

The small bedroom was the easiest, being in part of the original house, there was no studs from floor to roof, so we could simply drop the cables right down and cut a hole at the bottom for the ports. Easy!

The older walls never needed studs, since the walls are lined in about 10mm of solid sarking timber made from native hardwood Rimu, these timber planks hold the building together tight and eliminate the need for the more modern practice of horizontal studs in the walls. The upside of this sarking is that the place is solid and you can put weight baring screws into almost any part of the wall, and screw the faceplates for power and data directly into the wall without needing flushboxes. The downside is that the hole saw takes some effort to cut through this hardwood native timber and it also means that WiFi penetration betweens the rooms isn’t as great. Infact when I had the WiFi access point in a cupboard before it got properly installed, I struggled to maintain connections to some locations due to the thick walls.

Hello data!

If you look carefully, can see the thickness of the walls with the plasterboard + sarking.

The back rooms – bedroom, office and lounge were a bit more challenging. Due to structural blockages like support beams and horizontal studs in the younger office and bedroom renovation, it wasn’t simply a case of dropping the cable down from the roof to each room.Instead we ran the cables through the roof and then down all together in a single bunch thought the space that was once occupied by the brick chimney, to get the cables down from the roof to under the house. Once under, we were able to run them to the required rooms and pop the cables back up into the rooms by drilling a hole into the middle of each wall from under the house.

Cloud Pipes!

Cloud Pipes!

To do the master bedroom took some creativity, but we found that the hall cupboard that backs onto the bedroom was an easy to target location and dropped the cables down there, before doing some “creative re-construction” of the cupboard walls to get the cables down and through to the other side in the bedroom.

Even this coat cupboard needs to be GigE connected

Even this coat cupboard needs to be GigE connected

Running the cables was a three-step task. First we ran a single cable being fed out of the reel until we got it to the desired location. This is required to determine the length of the cabling needed, although if we were willing to be wasteful with cable and coil the excess in the roof, we could have made estimations on the generous side and skipped this step and just have run a draw wire from the immediate start.

We then removed the cable, pulling a draw wire through after it. In my case, we use some old cat5 cable as the draw wire since it’s nice and tough. Once the original cable is recovered, we cut the required number of lengths exactly the same, then create bundles of cable as needed.

We used electrical table to bind them together (since it doesn’t add any thickness to the bundles, unlike cable ties, which get stuck on holes) and made sure to stagger the cables so that it wasn’t a single large flat end trying to get through the holes.

Once the bundles are ready, it’s just a case of attaching it to the draw wire and pulling the draw wire through, pulling the new bundle behind it. Make sure you’ve drilled your holes to be big enough to fit the whole bundle!

 

The easiest installation was that of the roof-mounted WiFi access point (Ubiquiti Unifi UAP-AC). Since it just needed a single cable which needed to be run along the attic to the patch panel, we simply drilled a hole up into the attic and fed the cable up straight from the reel, no need to mess around with draw wires.

I suspect we could have done this for all the rooms in the house just as easily, so if you decide you want to invest in WiFi APs in every room rather than wired ethernet ports, you would have a lot easier time putting the APs up.

Leave plenty of length so you don't have to crimp a cable above your head

Drill hole, feed cable, doesn’t get much simpler than this.

Rather than a socket, the roof cable is terminated with an RJ45 connector which plugs directly into the back of the AP which then fits snugly on the roof hiding all cabling.

The end result looks quite tidy, I was worried about the impact on the character ceilings and part of me did feel bad putting the drill through it so I took care to keep the holes to the absolute minimum to ensure it could be patched without too much grief in future.

All done!

The blue-sun god we worship for internet access.

The blue square on the AP is visible in the dark, but doesn’t light up the area. It’s bright enough that I’d think carefully about putting it in a bedroom unless there’s a way to turn it off in software.

 

Whilst the roof mount AP had an RJ45 port due to space constraints andĀ aesthetics, all the room cables have been terminated at proper RJ45 jacks.

Hardware

PDL Cover, Grid (sold together), Third Party RJ45 keystone and PDL RJ45 clip.

My house is primarily PDL 500/600 series faceplates, which means I ended up sourcing the same PDL products for the data faceplates. The faceplates aren’t too outrageous at about $6 each (2-port / 4-port), but PDL charge a whopping $13.80 for their RJ45 data inserts. Given that I installed 14 sockets, that would cost $193.20 for the ports, which is crazy… I could buy several entire patch panels for that.

Fortunately the RJ45 inserts themselves (the keystones) are made by a number of vendors, you just need the PDL keystone clip to join any third party keystone with the PDL faceplates.

Hence I sourced 14x of the PDL clips at $1.38 each ($19.32 total) and then sourced 3x 5-pack of keystones on TradeMe from a seller “digitalera” for $9 per pack ($27). This brought my total spend for the RJ45 data inserts to $46.32… much much cheaper!

Result

The finished product.

All these cables terminate back in a small cupboard in the hallway, into a 24-port patch panel. There’s a bit of space space left over on it for future expansion as it occurs.

Cabling!

All patched and all ready to go

The patch panel is installed in a wall-mount 9 RU 19″ comms cabinet. I went for a 9RU and 30cm deep model, since it offers plenty of space for PDUs, cabling and also can fit lots of models of switches and routers with room to clear.

Data & Power sorted!

Data & Power sorted!

Cable management with this setup has been a little tricky – usually I’d prefer to have a cable management bar for the patch panel and a cable management bar for each switch, an arrangement that is space expensive, but the easiest and tidiest.

Unfortunately I quickly found that putting the cable management bars in the roof-height cabinet limits visibility too much, since it blocks the ability to see the switch ports or patch panel labels since you can’t look at it face on, but rather look at it upwards from the top of the ladder.

The approach I’ve ended up with is therefore a little unconventional, with a cable management bar at the very top of the rack, and cabling going up into it from the patch panel and then back down to the switch.

The downside of this approach is that cables cross the patch panel to get to the switch (arghgh I know!), but the upside is that I can still see all the other switch ports and patch panel ports and its still quite readable. I’ll understand if I’m kicked out of the data centre cabling perfection club however.

There’s still 5RU spare for some shelves for devices like VDSL model or a dedicated router, but given that the Mikrotik CRS226-24G-2S+RM RouterOS based switch can do almost everything I need including almost 200mbits routing capability, there’s no plan to add much more in there.

Currently the power and server data runs down to the floor, but next time I have an electrician on-site doing work, I’ll get a mains socket installed up by the cabinet to save a cable run and potentially a very shallow rackmount UPS to run the cabinet.

Finished! For now...

Cabling and equipment installed!

The final step was making sure everything actually worked – for that I used a $5 cable tester I picked up off Trademe – has nothing on a fancy brand like Fluke that can measure the length of cable runs and tell you the type of cabling pin out, but for a casual home installation it was great!

Remote control

Testing the cabling jobs – the meter runs through each wire in order so you can detect incorrectly punched cables or incorrect arrangements of the wires at either end.

 

I had most of the tools needed on hand already, if you’re tempted to do similar, you’re going to need the following:

  1. A decent electric drill.
  2. A hole saw (goes into your drill, makes big holes in walls). You need this to make the opening for your wall plates with enough room to sit all the RJ45 modules into the wall.
  3. Regular drill bits if you’re going up through the ceiling into the roof for WiFi APs – just need something large enough for a Cat6 cable and no more.
  4. An auger drill bit if you want to drill holes suitable for running bundles of cables through solid wood beams. Having a bit big enough to fit all your cables in your bundle a bit of slack is good.
  5. A punch down tool, this is what you use to connect each wire in the patch panel and RJ45 wall modules. Its worth buying a reasonable quality one, I had a very cheap (~$5) unit which barely survived till the end of the build since you tend to put quite a bit of force on them. The cheap tool’s cutter was so bad I ended up using a separate wire cutter to get the job done, so don’t make my mistake and get something good.
  6. A good quality crimping tool – this will allow you to terminate RJ45 (needed if you want to terminate to the plug, rather than socket for roof-mount access points), but they also tend to include a cable stripper perfectly aligned to strip the outer jacket of the cat5/6 cable. Again, don’t scrimp on this tool, I have a particular solid model which has served me really well.
  7. Needle nose pliers or wire cutters – you need something to cut out the solid plastic core of the Cat6 cable. You can do it in the crimping tool, but often the wire cutter or pliers are just easier to use.

And of course materials:

  1. A reel of Cat6 Ethernet. Generally comes in 305m boxes.
  2. A roll of black electrical tape, you’ll want to use this to attach guide cables, and to bundle cables together without adding size to the cabling runs.
  3. Cable ties are useful once you get cables into position and want tight permanent bundling of cables.
  4. RJ45 plugs if you are terminating to a plug.
  5. RJ45 modules and related wall plate hardware.
  6. Pipe/Saddle Clips can be useful for holding up cables in an orderly fashion under the house (since they’re designed for pipes, big enough to fit cable bundles) and they’re great to avoid leaving cables running across the dirt.

Note that whilst there are newer standards like Cat 6a and Cat7 for 10 GigE copper, Cat6 is readily available in NZ and is rated to do 10GigE to a max of 35-50m runs, generally well within the max length of any run you’ll be doing in a suburban house.

Settling In

This blog has been a little quiet lately, mostly thanks to Lisa and I being busy adjusting to the joys of home ownership with our new house we moved into in mid-September!

I'm a trust worthy reputable resident of Wadestown now!

I’m a trust worthy reputable resident of Wadestown now!

It’s been pretty flat-out and a number of weeks have already passed us by very quickly – we had anticipated the increase in expenditure that comes with owning a properly, but the amount of time it consumes as well is quite incredible, and given that the property hasn’t had a whole lot of love for the past 5 years or so, there’s certainly a backlog of tasks that need doing.

There’s also the unexpected “joys” that come with ownership, like the burst waterpipe on our first day in the new house, or the one hob on the cooker that appears to like leaking gas when it’s used, or the front door lock that has broken after a few weeks of use. For the first time ever, I almost miss having a landlord to complain to – however the enjoyment of putting a power drill through your first wall without requiring permission cannot be understated either.

 

Amusingly despite becoming home owners, it’s actually been the outdoors that’s been occupying most of my time, with large masses of plant life that has crept over the sheds, the paths and into roof gutters. I cleared 8 wheelbarrows of soil and plant material off the upper path the other day and it’s barely made a dent.

Rediscovering the lower pathway slowly...

Rediscovering the lower pathway slowly…

So far I’ve been mostly concerned about the low level plants, I haven’t even begun to look at the wall of trees and ferns around us – a lot of them are great and we will keep them, but a few certainly need some pruning back to make them a bit tamer and let a bit more light into the property.

Ferns in the mist. Pretty kiwi as bru.

Ferns in the mist. Pretty kiwi as bru.

I’ve been discovering the awesome range of power tools that exist these days – seems tools have come a long way from the days of my fathers wired drill, I’ve now got drills, sanders and even a weedeater/line cutter which all share the same cordless battery pack!

Got 99 problems but wires ain't one.

Got 99 problems but wires ain’t one. Cordless freedom baby!

I’ve had to learn some new skills like how to use a saw or how to set a post in the ground. Of course I cheated a bit by using ready-to-pour fastcrete, but hey, I’m lazy Gen Y-er who wants the fastest easiest way to make something work. ;-)

Hole digging

Harder than it looks. Stupid solid clay ground :-(

I also have two sheds that I need to do up – the first is in pretty good shape and just needs some minor fixes and paint job. It’s even got power already wired up so you can plug in your tools and go :-)

The second shed is in a far worse state and pretty much needs complete stripping down and repairing including a whole new floor and getting rid of almost a meter high pile of detritus that has collected around the back of it over the past 100 years. Helpfully some trees also decided to then plant themselves and grow right next to it as well.

The older shed, pretty but somewhat unusable without some hard work.

The older shed and upper pathway after tidying up the over growth.

 

The house is thankfully in a better state than the garden and sheds, although there is certainly a lot of work needed in the form of overdue maintenance and improvements. The house was built in 1914 (100 years birthday this year!), but thankfully despite the age of the property, the hardest and most essential modernisation has been done for us already.

There’s been a complete replacement of electrical systems with modern cabling and both the structure and interior is in good shape with the original Totara piles having been replaced and whatever scrim wall linings that previous existed having been replaced with plasterboard.

Most of the interior decor is playing it safe with neutral coloured walls, carpet and curtains and the native timber exposed on the doors and skirting. However there are a few garish items remaining from an earlier era where style wasn’t as important, like the lovely maroon tiled fireplace or the cork flooring in the kitchen :-/

The Lounge: Where 2014 meets with 1970 head on.

The Lounge: Where 2014 meets with 1970 head on.

 

Generally the property is nice and everyone who comes over describes it as lovely – but of course nobody tells you if your baby is ugly, so it’s entirely possible everyone is questioning our tastes behind our backs… But give it time, we have a lot of plans for this place that are yet to be actioned!

Our primary task right now is dragging our 20th century house into the 21st century with a few modern requirements like data cabling, heating and decent lighting.

Oddly enough I’ve already started on the data side of things, getting Cat6 ethernet cable run through the house to all the living spaces and roof mounting a WiFi AP and installing a proper comms cabinet. Priorities!

The next major issue is heating, the house has an old wood fire and old unflued gas heater, both of which look pretty dubious. We’ve left them alone and have been using a few recently installed panel heaters, but we need to consider a more powerful whole-house solution like a modern gas fireplace to handle the cold Wellington winters.

Power drills! Holes in walls! This is what home ownership is all about.

Power drills! Holes in walls! This is what home ownership is all about.

In addition to heaters, we also need to fix up the shocking lack of insulation that is common with New Zealand properties. Whilst we have roof insulation already, the floor needs insulating and at some point there is going to be a very expensive retro-fit double glazing cost we need to investigate as well.

 

Aside from these immediate priorities, there’s the question of changes to the layout. The biggest annoyance for us right now is that the kitchen/dining space and the lounge are two separate rooms with a bedroom in-between, which doesn’t really suit modern open plan living so we are pondering the cost of knocking out a wall and re-arranging things to create a single open plan living area.

Additionally we have a really small bathroom yet we have a massive laundry that’s about twice the size just through the wall. Considering the the laundry has almost nothing but a single lonely washing machine in it, it’s a prime candidate for being annexed for a new role as a massive new bathroom.

The tiny wooden cabin bathroom.

The tiny “wooden cabin” bathroom. If it wasn’t for the skylight and our character 12 foot ceilings, it would be really dark and tiny in there. :-/

We are also thinking about how we can improve the outdoor area which is a bit weirdly organised with a large patio area detached from the house and the back deck being a tiny strip that can’t really fit much. We’re already pondering extending the deck out further, then along the full length of the house, so we can join up with the lower patio and make it a nore usable space.

World's tiniest deck.

World’s tiniest deck, not exactly that useful…

Of course all these improvements require a fair bit of capital, which is one thing we don’t have much of right now thanks to the home loan, so its going to take some careful budgeting and time to get to where we want to be. For now, we are just enjoying having the place and plotting…..

 

Aside from the garden and sorting out house improvements, the other major time sink has been unpacking. We didn’t exactly have heaps of stuff given that we just had limited bits stored at each other’s parent’s houses, so it’s pretty scary at how much has emerged and arrived at our new house. I think everyone was kind of glad to get our junk out of their houses at long last, although I’m sure my parents will miss the file server buzzing away 24×7.

It’s been a bit of a discovery of lots of stuff we didn’t realise we had, I have literally a small data center worth of tech gear including rackmount PDUs, routers, switches and other items.

I know what you're thinking "Oh how typical of Jethro, boobs on a box" - but this one ISN'T MINE, it came out of Lisa's parents house... :-/

I know what you’re thinking “Oh how typical of Jethro, boobs on a box” – but this one ISN’T MINE, it came out of Lisa’s parents house which kind of disturbs me deeply.

This is probably the biggest negative of home ownership for me – I hate owning stuff. And owning a house is a sure way to accumulate stuff very, very quickly.

Owning a house means you have space to just “store that in the cupboard for now”. Being a couple in a large 4 bedroom home means there’s a lot of space and little pressure to use it, so it’s very easy for us to end up with piles of junk that actually doesn’t serve a purpose and not feel forced to clean it out.

I came back from AU with two suitcases and I could probably have culled that down to as little as one suitcase given the chance. There’s a huge amount of tech gear I’m considering offloading and Lisa has a massive pile of childhood stuff to make some hard decisions about, because as hard as it is to get rid of things, I think both of us are keen to avoid ending up in the same hording situation like our parents.

Of course some stuff can’t be avoided. I’ve spent a small fortune at Bunnings recently obtaining tools and materials to do repairs and other DIY for the house, so there’s a lot of additions to the “stuff I have to own but hate having to own” pile.

We also needed to purchase all new furniture since we had essentially nothing after returning from Sydney. I don’t mind buying a few quality pieces, but sadly it seems impossible to buy a house load of furniture without also obtaining an entire shed worth of cardboard and polystyrene packaging that we need to dispose of. Sorry environment! :-(

Trapped by packaging.

Trapped by packaging.

We’ve gotten through most of the unpacking, but there’s still a lot of sorting and finding homes for things left to do.

I’m looking forwards to getting to the point where I can just enjoy the house and the space we have. It should be fantastic during summer especially for entertaining guests with its large backyard, patio and sunny afternoons and I’m really looking forwards to having a proper home office setup again for my geeking needs

Oh how I've missed a home office!

Got my home office! If only I had money for computer upgrades left :-(

 

So that’s an update on where we are at for now. It’s going to be a busy year I think with a lot of time spent doing up the place, and I’ll have plenty more blog posts to come on the various adventures along the way. I suspect many of them are going to be quite low-tech compared to the usual content of this blog, but maybe I’ll wake up and suddenly decide that home automation is an immediate vital task I need to complete. ;-)

If you want some more pictures of the house, there’s a copy of all the real estate agent listing photos on my Pinterest account taken by an actual competent photographer, the plan is to try and take pictures along the way as we progress with our improvements to the property to see the progress we’ve been making.